Blogs (1) >>
ICSE 2019
Sat 25 - Fri 31 May 2019 Montreal, QC, Canada

The success of a fuzzing campaign is heavily depending on the quality of seed inputs used for test generation. It is however challenging to compose a corpus of seed inputs that enable high code and behavior coverage of the target program, especially when the target program requires complex input formats such as PDF files. We present a machine learning based framework to improve the quality of seed inputs for fuzzing programs that take PDF files as input. Given an initial set of seed PDF files, our framework utilizes a set of neural networks to 1) discover the correlation between these PDF files and the execution in the target program, and 2) leverage such correlation to generate new seed files that more likely explore new paths in the target program. Our experiments on a set of widely used PDF viewers demonstrate that the improved seed inputs produced by our framework could significantly increase the code coverage of the target program and the likelihood of detecting program crashes.